THE FIRST INITIAL BOUNDARY VALUE PROBLEM FOR HYPERBOLIC SYSTEMS IN INFINITE NONSMOOTH CYLINDERS
نویسندگان
چکیده
منابع مشابه
Initial-Boundary Value Problem for Hyperbolic Equations
where Ji = 0 for x0 < 0. The problem is to find necessary and sufficient conditions on B(x, B) such that the initial-boundary value problem (1), (2), (3) is well-posed. Note that all theorems that a;re formulated below will also apply to the case when (1) is a general hyperbolic equation or a hyperbolic system of equations of arbitrary order provided that all components of the characteristic co...
متن کاملThe Initial Dirichlet Boundary Value Problem for General Second Order Parabolic Systems in Nonsmooth Manifolds
In a series of recent papers [1], [2], [3], [4], [5] we have initiated the study of boundary value problems for (variable coefficients, second order, strongly) elliptic PDE’s in nonsmooth subdomains of Riemannian manifolds via integral equation methods. Here we take the first steps in the direction of extending this theory to initial boundary value problems (IBV P ’s) for variable coefficient (...
متن کاملLp-REGULARITY OF SOLUTIONS TO FIRST INITIAL-BOUNDARY VALUE PROBLEM FOR HYPERBOLIC EQUATIONS IN CUSP DOMAINS
In this article, we establish well-posedness and Lp-regularity of solutions to the first initial-boundary value problem for general higher order hyperbolic equations in cylinders whose base is a cusp domain.
متن کاملOn the Boundary Value Problem in a Dihedral Angle for Normally Hyperbolic Systems of First Order
Some structural properties as well as a general threedimensional boundary value problem for normally hyperbolic systems of partial differential equations of first order are studied. A condition is given which enables one to reduce the system under consideration to a first-order system with the spliced principal part. It is shown that the initial problem is correct in a certain class of function...
متن کاملThe Initial Value Problem for Some Hyperbolic-dispersive System
We consider the initial value problem for some nonlinear hyperbolic and dispersive systems in one space dimension. Combining the classical energy method and the smoothing estimates for the Airy equation, we guarantee the time local well-posedness for this system. We also discuss the extension of our results to more general hyperbolic-dispersive system.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Taiwanese Journal of Mathematics
سال: 2011
ISSN: 1027-5487
DOI: 10.11650/twjm/1500406485